Examen partiel n°2 - Mathématiques

Exercice 1

Justifier si les espaces suivants sont des espaces vectoriels, pour les additions et les multiplications par un scalaire usuelles.

- $E_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 3y^2 = 0\},$ $E_2 = \{(x,y,z) \in \mathbb{R}^3 \mid -2x y + 5 = 1\}.$ $E_3 = \{(x,y,z) \in \mathbb{R}^3 \mid 2x^2 + 5y^2 + 3z^2 = 0\},$ $E_4 = \{f : \mathbb{R} \to \mathbb{R} \mid f(1) = -f(-2)\}.$ $E_5 = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid u_0 \le u_1\},$ $E_6 = \{(u_n)_{n \in \mathbb{N}} u_{n+2} = -2u_{n+1} + 3u_n\}.$

Exercice 2

Soient \mathbf{u} et \mathbf{v} deux vecteurs d'un espace vectoriel E. Montrer que la famille $\{\mathbf{u}, \mathbf{v}\}$ est libre si et seulement si il en va de même pour $\{u, u - v\}$.

Exercice 3

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie par f(x,y,z) = (x+y,2x-y+z).

- (1) Déterminer la matrice de f par rapport aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- (2) On pose

$$\mathbf{u_1} = (1, -1, 1), \ \mathbf{u_2} = (0, -1, 0) \text{ et } \mathbf{u_3} = (1, 0, 2),$$

ainsi que

$$\mathbf{v_1} = (-1, 3) \text{ et } \mathbf{v_2} = (-2, -1).$$

Montrer que $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ (resp. $\{\mathbf{v_1}, \mathbf{v_2}\}$) forme une base de \mathbb{R}^3 (resp. \mathbb{R}^2). Déterminer la matrice de f relativement à ces deux bases.

Exercice 4

Soit $E = \mathbb{R}_5[X]$, l'espace des polynômes de degrés inférieurs ou égaux à 5. On considère l'application Δ qui, à $P \in E$, associe $\Delta(P) = Q$ défini par

$$Q(X) = P(X+1) + P(X-1) - 2P(X).$$

- (1) Montrer que Δ est un endomorphisme de E.
- (2) Calculer $\Delta(X^k)$, pour tout $0 \le k \le 5$.
- (3) Déterminer le noyau, l'image et le rang de Δ .
- (4) Montrer que pour tout $Q \in \mathbb{R}_3[X]$, il existe un $P \in E$ tel que $\Delta(P) = Q$.
- (5) Montrer que pour tout $Q \in \mathbb{R}_3[X]$, il existe un unique $P \in E$ tel que P(0) = P'(0) = 0et $\Delta(P) = Q$.